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J .  P H Y S .  E. ( G E N .  PHYS. ) ,  1969 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Statistics of heterodyne detection of Gaussian light 
E. JAKEMAX and E. R. PIKE 
Royal Radar Establishment, Great Malvern, Worcs. 
MS.  received 2nd August 1968 

Abstract. We discuss the statistical properties of the intensity fluctuations of light 
fields consisting of an incoherent Gaussian component heterodyned with a single- 
frequency coherent beam. The second moment of the intensity-fluctuation distribu- 
tion is obtained in an analytic form for the case of a Lorentzian incoherent spectrum 
for arbitrary values of the bandwidth and frequency displacement from the coherent 
mode. 

The analysis inclitdes as special cases many of the exact results obtained in 
statistical optics oT-er the last decade. 

1. Introduction 
I n  a recent paper (Jakeman and Pike 1968 a, to be referred to as JP) the quantum- 

mechanical problem of the statistics of homodyne photoelectric detection of Gaussian 
light was discussed. The  intensity-fluctuation distribution and the photon-counting 
statistics were derived for Lorentzian spectra of arbitrary linewidth. This theory has since 
been used to determine experimental linewidths of scattered laser light (Jakeman et al. 1968). 
Additional spectral information can be obtained by the use of heterodyne detection where 
the Gaussian field is superimposed, before detection, on a known coherent component. 
In  this way, for instance, the centre frequency of the model field cited above can also be 
determined. I n  many cases the complete spectrum of a Gaussian source can be found by 
the heterodyne method. 

The  statistical properties of a Gaussian optical field mixed with a single coherent mode 
have been studied theoretically by several previous authors. Glauber (1963 b) gave the basic 
formula for the density operator of superimposed multimode fields. He later found 
(Glauber 1966), as did also Lachs (1965) independently, the photon-counting distribution 
and its factorial moments (the actual moments of the intensity-fluctuation distribution) 
for a superposition of a coherent and a narrow band Gaussian field at the same frequency. 
Morawitz (1965) calculated N(*) for a superposition of a single coherent mode and a 
Gaussian component of various line shapes centred at the same frequency. His result can 
be compared with ours for the case of a Lorentzian profile and it seems that his calculation 
is restricted to the case of large bandwidth, although this is not explicitly stated. The  
general heterodyne problem for Gaussian light would include the case where both the 
centre frequency of the Gaussian component and its spectrum were arbitrary. The  
theoretical results required for comparison with statistical experiments are the factorial 
moments AT(r) of the photon-counting distribution $(E, T); these can be found from the 
intensity-fluctuation distribution P(E) of the field or, more conveniently, from its moment- 
generating function Q(s). 

I n  this paper the spectrum of the Gaussian component is restricted to be of Lorentzian 
form with half-width at half-height I?, but this can take arbitrary values compared with the 
inverse of the sampling time T. The centre frequency coo is also allowed to differ arbitrarily 
from the coherent signal frequency wq. The detector, however, is assumed to respond 
uniformly over the frequencies involved. The  analysis to be presented includes as special 
cases many of the exact results obtained in statistical optics over the last decade. A guide 
to the literature is given in table 1, in pictorial form, with names and dates of authors against 
the particular field or field combinations considered. We have attempted to select the 
authors first responsible for each new result; although our search of the literature has been 
fairly thorough, there may be errors in the table of which we should be very grateful to hear. 
The  table does not include the numerous results obtained by superimposing combinations 
of the same or different distributions after detection. Such combinations might be obtained, 
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for instance, by using different areas of the same photocathode for each component; the 
simplest example is the superposition of orthogonal components of unpolarized light. 
Results of this nature can be simply obtained by multiplying together the separate generating 
functions where they are available. The cases where coherent signals are present at more 
than one frequency are also excluded. 

In  $ 2 the moment-generating function is calculated and from this in $ 4  the second 
factorial moment of the photon-counting distribution is derived. Less general results are 
discussed in $ 3  where all the limiting cases of the table are obtained. The paper is concluded 
with a discussion of results in $ 5 .  Much of the detailed mathematics is reserved for the 
appendix. 

2. The moment-generating function 
The positive-frequency part of the electric field obtained by the superposition of 

incoherent Gaussian light and a coherent beam of frequency wq may be expanded in normal 
modes as follows (Glauber 1963 b): 

&+(Y, t )  = 2 zkelz(r, t)+p,e,(r, t )  

e k ( T ,  t )  = i(+%wk)1i2uk(r) exp( - iw,t). 

(1) 

(2) 

k 
where 

Here the zk are statistically independent random variables : 

( ~ l ~ * c 1 ~ )  = ( n t ) &  

with the probability distribution 

and I/3,1z is a fixed intensity associated with the coherent part of the field. Defining the 
incoherent and coherent parts of the field respectively by 

t )  = 2 cxkek(T, t ) ,  g C + ( y ,  t )  = p4e4(y ,  t )  (5) 
k 

we may show, using (3) above, that 

( & + ( r ,  t )&- ( r ,  t ) )  = (gi+(P, t )gi-(y ,  t ) ) +  {gC-(r ,  t)gC-(r, t ) ) .  (6) 
The  integrated intensity E( T )  is defined by 

We have dropped the Y dependence as we consider henceforth the field at a single space 
point only. It is convenient, following the treatment of JP, to introduce the new basis 
set d i ( t )  : 

i 

which are orthogonal over the interval 0 < t < T and chosen so that the ak’s defined by 

ak = 2 NiSik  (10) 

are statistically independent : 
(aiaj > = (mi >Si, 
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with the probability distribution 
1 exp i- g-. 

p(ak) = -- 
7 7  <mk > 

The  integrated intensity now takes the form 

and the moment-generating function Q(s) associated with the intensity-fluctuation distri- 
bution P(E)  is given by the formula, obtained by integration as in JP, 

where the (mk) are eigenvalues of the integral equation 
n F  

and 

If the spectrum of the incoherent part of the field is a Lorentzian centred on the frequency 
w o  and of half-width at half-height I‘, the generating function is determined by the relations 

The  solution of the integral equation has been given by several authors (see, for example, 
Davenport and Root 1958, p. 99) and the eigenvalues take the form 

where y = r T  and the Y k  may be divided into two classes satisfying the transcendental 
equations 

yk tan+y, = y ,  jlk cot 49, = - y .  (20) 
The  corresponding eigenfunctions are 

and it is not difficult to show that this leads to 

where 
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and 

Using the identity (Slepian 1958) 

where 

it is shown in the appendix that the moment-generating function may be expressed in the 
closed form 

&(s) = e ’ ~ l ( Y > ~ l ( Y > ~ 2 ( ~ ) Q 2 ( Y ) .  (29) 
Q2 and Q2 are functions of y, s(Ei), s(E,) and Cl defined in the appendix but not repro- 
duced here owing to their complexity. 

3. Some limiting cases 
The generating function defined by (29) above is the Laplace transform of the exact 

intensity-fluctuation distribution function for superposed Gaussian-Lorentzian and single- 
frequency coherent light. The formula holds for arbitrary values of the three parameters 
wO, I‘ and wq entering into the theory and can in principle be used to obtain the photon- 
counting probability distribution and its moments for any values of these quantities. 
However, it is useful at this stage to consider various limiting situations which lead to 
algebraic simplification and which may often be realized in practice. Contact with previous 
work can also be achieved in this way and acts as a useful check on the considerable amount 
of algebra outlined in the appendix. 

In  the first column of table 1 the various limiting cases which can be derived from the 
problem treated here are pictured, followed by mathematical statements of the limits and 
a bibliography classified according to the quantities actually calculated. The most general 
case, for which (29) is the generating function, is shown in the first line and we shall in 
fact use the latter to evaluate the second factorial moment of the intensity-fluctuation 
distribution in the next section. The somewhat less general case, wq = wo, which has 
not been treated before is characterized by the generating function 

(30) 

and el, Ql, y are defined in the last section. The corresponding second moment is given 
in the next section. A further case which has not been studied before is shown in the 
third line of the table. This is the narrow band limit. When y -+ 0 the generating function 
(29’) reduces to 
\ I  

(4 ( E , )  (Ec}s2 sin2 hs2) 1 
+ $ ( E l )  

Q(s) = exp 
R2(1 +s(Ei)) 

and leads to the intensity-fluctuation distribution 
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Table 1. Photon counting statistics of Gaussian-Lorentzian and coherent 
fields-a bibliography 

Field Limit 

1 r40  
I 

- - - _  
r 4 m  

I wq = wg 

Q (4 

present 
paper 

present 
Paper 

present 
paper 

present 
paper 

G66 

H64 

G65 

._ - -  - ~ 

_ - - _  - - -  
<E,) = 0 G65$ 
r + c o  H64: 

(Ei) = 0 G65 

I 

P(E)  

present 
paper 

present 
paper 

R45t 
P67 

JP68 a!, 

R45 t 
M64 

JP68 a 

R45 t 
M64 

P(% T) 

present 
paper 

G66 
L65 

B66r 
JP68 a\: 

M5 9 

M59$ 
MP65 
JP68 b t t  

G63 a 
M64 

“ 2 )  

present 
paper 

present 
paper 

present 
paper 

present 
paper 

L65 

B6611 
JP68 a 

R45t 
145 8 

Pu56 3 
M583 
G63 

R45t 
G6 5 

119 

present 
paper 

R45 t 
G66 
L657 

R45 t 
G66 
L657 

G65 

R45 t 
G65 

---- Incoherent field. 
- Coherent field. 

$ Not formal expansions in 1 y.  
$ In  these early papers bunching was thought to be a property of photons. 
7 Recurrence relations only. 
I1 Calculated numerically. 

Mathematically equivalent calculation. 

T o  second order in l / y .  
B. BCdard: G. Glauber 1963 a: H, Helstrom; JP, Jalceman and Pike; L, Lachs; NI, Mandel; MP, , ,  

McLkan and Pike; P, Perina; Pu, Purcell; R, Rice. 
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The  second factorial moment for this case is given by 

where a is the quantum efficiency of the detector and (n> = cr(E). 
Contact with previous work on superposed coherent and incoherent fields is made 

when wq = w o  in the broad and narrowband limits shown in the fourth and fifth lines of 
the table respectively. The  broad-band limit y -+ cc can be formally obtained, when 
wq = w o ,  by expanding (30) above in powers of l /y.  Retaining terms up to first order 
only gives 

and leads to the following formulae for the photon-counting distributions and factorial 
moments : 

P(., T )  = 

where ( n )  = ( E , }  -+ (n,). As mentioned in the introduction, Morawitz (1963) has given 
an expression similar to (37) for N2). There is in fact a slight numerical difference which 
we take to be an error in Morawitz's work. I n  the narrowband limit y --f 0 the generating 
function reduces to the particularly simple form 

1 

in agreement with Glauber (1966) and Perina (1968). Inverse Laplace transformation 
leads to 

and for the photon-counting distributions and factorial moments we obtain 

These results, expressed in terms of Laguerre polynomials La, are identical with those 
of the earlier work of Glauber (1966), Lachs (1965), Perina (1967) and Rice (1945). 

Finally, the single-field cases appearing on the last four lines of the table follow 
immediately on setting (E ,}  or (E,) to zero in (29) and are seen to be in agreement with 
previous work. 
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4. The second factorial moment 
Although the intensity-fluctuation distribution cannot be obtained analytically from 

the formula (29) for Q(s),p(n, T )  and Nr) can, in principle, be generated by straightforward 
differentiation. However, the complex nature of the expression renders this process 
impracticable beyond second order. I n  this section, therefore, we restrict ourselves to a 
derivation of the second factorial moment of the counting distribution. 

Using the definition of iV2) appearing in equation (34) and from (14) for Q(s), it is 
not difficult to show that 

In  deriving (42) we have used the property that (14) is equal to the product of the generating 
function in the absence of (E,) (whose derivatives at s = 0 are known) and a factor 
involving l/3QSqk\. The last term is defined by (19) and (22 )  and may be evaluated by 
writing it as the sum of two terms, each expressible in the form 

(43 1 d Y k 2  S=--C 
dQ2 k ( y k 2  + y 2  + 2Y)(3.’k2 + y2)(yk2 - a’)’ 

T h e  summand can be split into partial fractions 

1 Y 1 + d 

Q2 

+ 2( R2 + y2)( R2 + y2 + 2 y )  y k 2  -+ - Q2 
(44) 

and summed following the procedures adopted in the appendix. For example, the first 
term of S may be written as 

T h e  final result is 
2e- Y((y2 - Q2) cos 0 - 2yR sin Q} 

( Q2 + y2)2 

When the coherent mode is superimposed on an incoherent field of the same peak frequency, 
w o  = wq (Q -+ 0), this expression simplifies: 

Equation (45) also simplifies if the coherent mode lies well out in the tail of the Lorentzian 
spectrum of the incoherent field, so that the condition y < Q is satisfied. In  this case NZ3 
takes the form 

which in the narrow band limit, y --f 0, reduces to (34). 
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5. Discussion of results 
In  figure 1 the excess normalized second factorial moment, W2)/ ( E . ) ~  - 1, is plotted 

against y for various values of the fraction of incoherent light ( n i ) / ( n )  and R, the ratio 
of the difference frequency lwo - wql to the incoherent bandwidth I?. In  all cases the 
gradients of the curves approach - 1 as y becomes large, whilst for small y formula (34) 
is obeyed. The  striking new feature to appear in the heterodyne case is the interference 
pattern evident when the incoherent light does not overlap the coherent mode, i.e. for 
large R. The origin of the fluctuations in "V2) can be understood from the following 
considerations. Although the average value of the quantity E defined by equation (7) 
shows no interference effects in the usual sense because the amplitudes of the incoherent 
modes are random, fluctuations in the second moment ( E 2 )  do not average out. For a 
single incoherent mode at w = w o ,  which is equivalent to the narrow-band limit given by 

= I  

\ 

R = 100 

I 
10-31 I I ! 

10-2 10-1 I IO rr 
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I H = IUU 

10-2 1 1 I 1 
lo-' I IO 

r r  10-2 

Figure 1. The excess normalized second factorial moment for the values of R 
( =  I w o - o , l : r ) s h o ~ ~ f o r ( a )  <n,>/<n> = O.l , (b)  <ni>/(n) = 0.2,(c) (ni)/<n> = 0.4, 
(a) <ni>/ (n> = 0-8. The broken line gives the value for the case where the coherent 

signal is absent. 

equation (34), the interference term takes the form 

8 (a , )  (n,)  sinz{(g(wo - w J T )  
[WO - wq]2T2 

This expression has a minimum at $( w o  w,) T= n- and a maximum near +(wo - wq)  T = 3 ~ / 2 .  
For fixed values of R this implies a minimum in N2)/ (n)' - 1 at y = 2v/R and a maximum 
near 37riR. Inspection of figure 1 confirms these predictions. The  interference at higher 
values of y is masked by the broadening of the incoherent spectrum (or the equivalent 
protraction of the time averages of E(T)) .  

I n  a typical experiment I?, w o  and wq would be fixed and wq known. R would thus be 
fixed and experimental measurements of N2)/ (n>z - 1 for two or more values of T would 
enable the appropriate curve of figure 1 to be chosen and the value of y and hence I' 
determined. Finally, since wq is known, the additional parameter w o ,  the centre frequency 
of the noise component, could be found. Although we have restricted our detailed 
considerations here to the case of Gaussian-Lorentzian light, a complete curve of N2) 
against T in a heterodyne experiment can be used, in principle, to determine an arbitrary 
spectrum. We shall discuss this problem in a future publication. 
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Appendix 

functions. &y) may be evaluated in a similar way. 
We shall express the factor Q2(y) appearing in equation (29) in terms of elementary 

From (14), (19) and (20) 

where 

Taking logarithms of both sides of (Al), we obtain 

where 

This sum can be split up into partial fractions and we must evaluate sums of the three 
types 

d 
S1 = s- 2 In(1 +s(mk)) 

ds k 

d 
= s - l n ~ ( l + s ( m , k > )  

ds k 

which may be evaluated immediately, using relation (27), to give 

Similarly 

d 
Sl = - - s  - In Ql(y). 

ds 

s2 is best expressed in terms of the y k :  

(Aj )  

(A6) 
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Q2(y) and &(y) can thus be expressed in closed form. The final results, using (A3)-(A7), 
are 

y(Q2+y2)  d2{1n Ql(Q)} dQ2 - 
2(@+ y2 + 2y)(QZ + y2 + 2s (Ei).;j 
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